

HEIZEN MIT WÄRMEPUMPEN

Entscheidungshilfe für den Umstieg

WÄRMEPUMPEN

\sim 11	TE D			CTD	. C A I	
	1 F P		M(- I	\		
u		LAND	1101	$J \cup D_{\Gamma}$	1 <i>)</i> // 1	UND O

HEIZEN MIT WÄRMEPUMPEN

DEN UMSTIEG PLANEN UND VORBEREITEN

WOHER KOMMT DIE WÄRME?

Wärmequelle Grundwasser Wärmequelle Erdreich Wärmequelle Außenluft Hybridheizungen

WIE EFFIZIENT SIND DIE SYSTEME?

WIE HELFEN SIEGEL UND LABEL?

KOSTEN

Investition
Förderung
Strom für die Wärmepumpe
Heizen mit Solarstrom

SMART HEIZEN: VERNETZTE GERÄTE

Stand: 04/2025 Layout: B+D Agenturgruppe Text: Verbraucherzentrale NRW

Grafiken: Verbraucherzentrale NRW, B+D Agenturgruppe

Druck: Küpper Druck Köln, Auflage 7.000

Fotos / Bildnachweise: S.1.StockMediaProduction_AdobeStock; S. 3 PhotographyByMK; S. 6 asaflow; S. 6 luna; S. 7 thodonal; S. 8 Kwangmoo; S. 11 Janni; S. 11 contrastwerkstatt; S. 11 by-studio); Europäische Komission (S. 9); Bundesverband Wärmepumpe (BWP) (S. 9, 11); 123rf (S. 10 Maryna Pleshkun)

GUTE PLANUNG IST DAS A UND O

2

3

10

11

Anders als Öl- oder Gasheizungen verursacht eine Wärmepumpe keine klimaschädlichen Treibhausgase. Stattdessen nutzt sie Wärme aus der Umgebung und arbeitet dafür mit Strom. Wer Strom aus erneuerbaren Quellen bezieht, heizt umso klimaschonender. Es ist grundsätzlich wichtig, den Strom effizient einzusetzen und so einen möglichst sparsamen Betrieb zu gewährleisten. Wenn die Heizung also mit möglichst wenig Strom möglichst viel Wärme gewinnt, stimmt auf der einen Seite die Klima- und Kostenbilanz und können Sie auf der anderen Seite auch staatliche Fördermittel in Anspruch nehmen. Damit das gelingt, ist die sorgfältige, fachgerechte Planung bei Wärmepumpenheizungen besonders wichtig. - umso mehr, wenn Sie ein älteres Haus haben und den Umstieg hin zur Wärmepumpe planen. Bei neuen Häusern ist es bereits Standard, Wärmepumpen einzubauen. Mit der richtigen Auslegung kann das System aber auch in bestehenden Gebäuden effizient und nachhaltig betrieben werden. Wenn die Planung stimmt und der Umstieg gegebenenfalls von weiteren Maßnahmen begleitet wird, ist eine Wärmepumpe auch für viele bestehende Gebäude die beste Wahl.

LASSEN SIE SICH BERATEN

In dieser Broschüre wird aufgezeigt, welche Punkte bei einem Umstieg wichtig sind. Sie gibt einen Überblick über die Typen von Wärmepumpen mit ihren Stärken und Schwächen. Die Broschüre zeigt, wie Sie die Effizienz eines Systems einschätzen und optimieren können. Sie nennt Richtwerte zu Kosten, verweist auf Fördermittel und hält Tipps zur Auswahl qualitätsgeprüfter Systeme bereit. Da das Thema Wärmepumpe sehr vielschichtig und komplex ist, können wir an dieser Stelle allerdings kein Wegweiser durch die gesamte Planung sein. Lassen Sie sich zu Ihrem individuellen Fall beraten.

© Verbraucherzentrale NRW e.V., Düsseldorf | Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung der Verbraucherzentrale NRW. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen. Die Broschüre darf ohne Genehmigung der Verbraucherzentrale NRW auch nicht mit (Werbe-) Aufklebern o. Ä. versehen werden. Die Verwendung der Broschüre durch Dritte darf nicht zu absatzfördernden Zwecken geschehen oder den Eindruck einer Zusammenarbeit mit der Verbraucherzentrale NRW erwecken.

HEIZEN MIT WÄRMEPUMPEN

Die Wärmepumpe ist eine Heiztechnik, die Wärme aus der Außenluft, dem Grundwasser oder dem Erdreich nutzt, um das Gebäude zu beheizen. Für den Betrieb der Wärmepumpe wird kein Öl oder Gas verbrannt. Sie arbeitet mit Strom.

DEN UMSTIEG PLANEN UND VORBEREITEN

Im Neubau ist die elektrische Wärmepumpe inzwischen die Nummer eins der Wärmeerzeuger. In bestehenden Gebäuden muss der Umstieg gut geplant und gegebenenfalls von weiteren Maßnahmen begleitet werden. Das liegt daran, dass Heizungen in unsanierten Gebäuden mit viel höheren Temperaturen arbeiten müssen als in Häusern mit gutem Wärmeschutz. Und jedes Grad, um das die Temperatur auf dem Weg von der Quelle bis zum Heizkörper steigen muss, kostet zusätzlichen Strom.

TIPP ANPASSUNG IM **BESTEHENDEN GEBÄUDE**

Wenn Sie Ihr Zuhause mit guten Fenstern und Wärmedämmung ausstatten und die Heizkörper vergrößern, braucht das Heizungswasser nur noch eine geringere Temperatur. Dadurch kann eine Wärmepumpe auch in älteren Gebäuden effizient laufen. Eine Fußbodenheizung wäre ideal, ist aber keine Voraussetzung.

Es ist sehr wichtig, dass dem Einbau einer Wärmepumpenheizung eine sorgfältige, fachlich korrekte Planung voraus geht. Damit wird sicher gestellt, dass Wärmequellen und Anlagenleistung richtig bemessen, die Räume ausreichend warm und unnötiger Stromverbrauch vermieden werden.

Eine Checkliste mit den wichtigsten Punkten, auf die Sie bei Auswahl und Kauf einer Wärmepumpe achten müssen, finden Sie unter

www.verbraucherzentrale.nrw/ checkliste-waermepumpe

Eine Wärmepumpenheizung sollten Sie im Regelfall mit einem Pufferspeicher kombinieren. Dieser speichert erzeugte Wärme zwischen, bevor sie in die Heizkörper weiterfließt. Dadurch muss sich die Wärmepumpe seltener an- und ausschalten, was den Verschleiß mindert. In manchen Fällen kann auch das Heizungssystem selbst als Wärmespeicher bereits reichen, so dass Sie auf den Pufferspeicher verzichten können. Lassen Sie sich hierzu vom Fachbetrieb beraten.

WOHER KOMMT DIE WÄRME?

Je höher die Temperatur einer Wärmequelle ist, desto sparsamer kann eine Wärmepumpenheizung arbeiten. In dieser Hinsicht am besten geeignet sind das Grundwasser und das Erdreich, weil diese selten kälter als zehn Grad Celsius sind. Erd- und Wasserwärmepumpen sind allerdings zum Teil mit Genehmingungspflichten und aufwändigeren Arbeiten auf dem Grundstück verbunden. Beliebt sind daher Luftwärmepumpen, da die Nutzung der Außenluft als Wärmequelle relativ unkompliziert ist.

GENEHMIGUNGEN

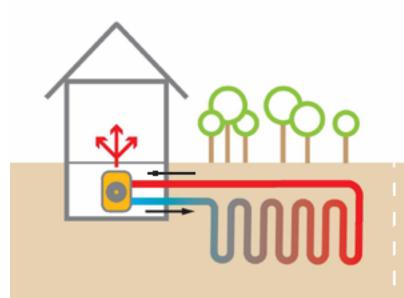
Um Grundwasser oder Erdwärme zu nutzen, benötigen Sie eine Genehmigung der Unteren Wasserbehörde. Eine Voranfrage dort empfiehlt sich, die eigentliche Genehmigung aber holt später der von Ihnen beauftragte Betrieb ein. Geologische Landesämter unterstützen Sie bei der Beurteilung der Ergiebigkeit dieser Quellen.

Da alle Varianten Wasser zum Übertragen der Wärme in die Räume nutzen, ist je nach Wärmequelle auch von Luft-Wasser-Wärmepumpen, Sole-Wasser-Wärmepumpen (bei Erdwärme) oder Wasser-Wärmepumpen die Rede. Diese Broschüre nutzt die Kurzbezeichnungen.

WÄRMEQUELLE GRUNDWASSER

Wenn Sie das Grundwasser nutzen möchten, benötigen Sie zwei tiefe Brunnen. Aus dem sogenannten Saugbrunnen wird das Wasser zum Wärmetauscher der Wärmepumpe gepumpt. Der Schluckbrunnen führt es wieder zurück. Die Pumpe, die das Wasser bewegt, sollte nur so viel elektrische Leistung aufnehmen wie unbedingt nötig. Sonst verbraucht die Anlage zu viel Strom.

Wichtig ist die Zusammensetzung des Grundwassers. Hohe Mengen an Eisen und Mangan können dazu führen, dass Filter an den Brunnen verstopfen. Dieses Problem ist bekannt unter dem Namen Verockerung. Auch sollte der absinkende Grundwasserspiegel berücksichtigt werden – lieber etwas tiefer bohren. Muss ein neuer Brunnen gebohrt werden, macht das die Anlage in der Regel unwirtschaftlich. Bei falscher Zusammensetzung scheidet Grundwasser als Wärmequelle deshalb aus.


FAZIT GRUNDWASSER

Mit Grundwasser können Wärmepumpen die höchste Effizienz erreichen. Eine solche Anlage können Sie aber nicht überall installieren. Eine genaue Untersuchung ist deshalb unerlässlich.

WÄRMEQUELLE ERDREICH

Systeme, die Erdwärme nutzen, heißen Erd- oder Solewärmepumpen – beide Worte meinen dasselbe System. Sie sind an vielen Orten einsetzbar. Erdwärme lässt sich entweder mit flachen Erdkollektoren gewinnen. Dabei handelt es sich um ein dichtes Rohrleitungsnetz auf einer großen Fläche in etwa 1,5 bis 2 Metern Tiefe. Oder es kommen Erdsonden zum Einsatz, die durch Rohre in Bohrlöchern bis zu 100 Meter tief in den Boden getrieben werden. Reicht eine Sonde für die benötigte Heizleistung nicht aus, arbeiten mehrere parallel.

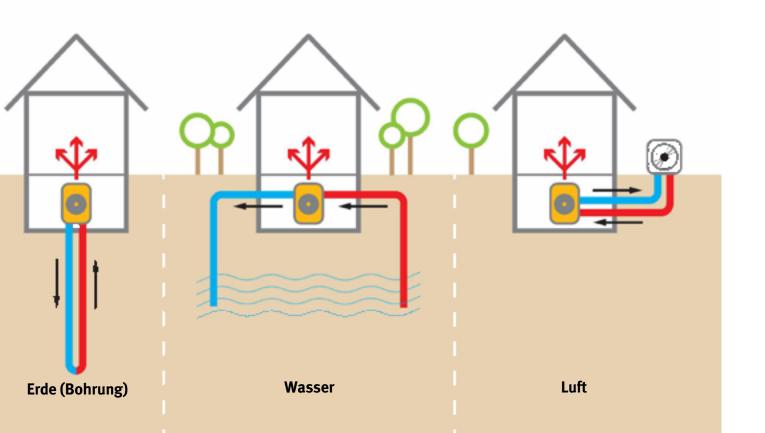
Erde (Erdkollektoren)

Die Sondenbohrung kommt für bestehende Gebäude eher in Betracht als Erdkollektoren, weil sie viel weniger Fläche benötigt. Für einen Kollektor müsste oft der gesamte Garten aufgegraben werden. Es gibt allerdings einige instabile Gesteinsformationen, die durch eine Bohrung ins Rutschen geraten können. Der Untergrund sollte daher fachlich beurteilt werden. Um sicherzugehen, dass die Bohrung fachgerecht und umweltverträglich durchgeführt wird, sollten Sie Bohrunternehmen beauftragen, die gemäß den Vorgaben des Deutschen Vereins des Gas- und Wasserfaches (DVGW) zertifiziert wurden. Weitere Informationen gibt es bei der Unteren Wasserbehörde.

Bei allen Kollektoren und Sonden gilt: Im Winter kühlt die Umgebung durch die Wärmepumpe aus. Wie gut die Wärme aus dem umgebenden Erdreich nachfließt, hängt vom Untergrund ab. Je nasser die Erde ist, umso besser. Die Fläche über einem Erdkollektor dürfen Sie deswegen nicht versiegeln, das heißt pflastern, betonieren oder anderweitig befestigen.

Einen Eindruck von der Ergiebigkeit der Erdwärme auf Ihrem Grundstück erhalten Sie unter

www.geothermie.nrw.de



NICHT AM FALSCHEN ENDE SPAREN

Um die Investition möglichst gering zu halten, werden Wärmequellen häufig zu knapp bemessen. Doch hier zu sparen, heißt, am falschen Ende zu sparen. Bei zu kleinen Wärmequellen kühlt sich das Erdreich immer stärker ab und die Leistung der Heizung sinkt: Das Haus wird nicht mehr richtig warm. Dann bleibt nur, erhebliche Zusatzkosten in Kauf zu nehmen, um eine weitere Sonde zu bohren oder mit dem Heizstab zu überbrücken, bis die Erde sich im Sommer durch die Sonnenwärme regeneriert hat. Mit einer guten Planung lässt sich das vermeiden.

FAZIT ERDWÄRME

Eine Erdwärmeanlage kann eine hohe Effizienz erreichen und ist auf vielen Grundstücken möglich. Erdkollektoren und insbesondere Erdsonden sind zwar teuer, aber lange haltbar. Häufigster Fehler ist eine zu kleine Auslegung des Kollektors oder der Sonde.

6 | Wärmequellen

•••

WÄRMEQUELLE AUSSENLUFT

Luft ist deutlich weniger ergiebig als Erde und Grundwasser, trotzdem ist die Nutzung der Außenluft als Wärmequelle beliebt. Das liegt daran, dass diese Variante nicht so aufwändig ist und sich für die meisten Haushalte gut eignet.

Mit Luftwärmepumpen lässt sich auch aus der kalten Winterluft noch Heizwärme gewinnen. Eine Luftwärmepumpe können Sie im Haus oder draußen aufstellen. Sie hat große Ventilatoren, um erhebliche Luftmengen zu bewegen. Das ist nicht ohne Geräusch möglich, weswegen Sie Lärmschutz unbedingt bei Ihrer Planung berücksichtigen sollten (siehe Seite 7: Geräusche minimieren).

Günstiger und einfacher umzusetzen als die anderen Varianten sind Luftwärmepumpen.

FAZIT AUSSENLUFT

Eine Luftwärmepumpe ist weniger aufwändig als andere Varianten. Gut geplant und ausgeführt kann sie effizient arbeiten, wenn sie das Heizwasser nur auf relativ niedrige Vorlauftemperaturen erwärmen muss. Unbedingt zu bedenken ist der Schallschutz.

VARIANATE NUR FÜR WARMWASSER

Es gibt auch Luftwärmepumpen, die nur für die Erwärmung von Wasser für Dusche und Co. zum Einsatz kommen. Sie werden mit einem Wasserspeicher mit etwa 250 bis 300 Liter Inhalt kombiniert. Die Wärme beziehen sie entweder direkt aus dem Raum, in dem sie stehen. Oder ein Schlauch führt durch einen Mauerdurchbruch nach draußen und saugt dort Außenluft an. Auch hier müssen Sie die Geräuschentwicklung beachten.

WÄRMEPUMPEN LASSEN SICH AUCH ZUR KÜHLUNG NUTZEN

Viele Wärmepumpen können im Sommer auch die Wohnräume kühlen. Wenn Sie diese Möglichkeit nutzen möchten, müssen Sie das in die Anlagenplanung einbeziehen und sich gut beraten lassen. Sie sollten auch bedenken, dass der Stromverbrauch dadurch steigt. Strom aus einer eigenen Photovoltaikanlage zu nutzen, könnte daher sinnvoll sein.

GERÄUSCHE MINIMIEREN

Eine Luftwärmepumpe erzeugt im Betrieb einen Brummton. Gerade in ruhigen Wohngebieten kann das von der Nachbarschaft als störend empfunden werden. Auch wenn der Schallpegel innerhalb der gesetzlichen Grenzwerte bleibt, kommt es manchmal zu Beschwerden.

Um Lärmprobleme zu vermeiden, ist zum einen die Wahl eines leisen Geräts entscheidend. Hier helfen die Schall-Angaben auf dem Energieeffizienz-Label weiter. Zum anderen muss auf den korrekten Betrieb des Geräts geachtet werden. Darüber hinaus kommt es auf die richtige Platzierung der Anlage an. Gute Hinweise zum Lärmschutz enthält die Broschüre "Mach' es richtig - Lärmschutz bei Luftwärmepumpen" des NRW-Umweltministeriums, die Sie unter www.umwelt.nrw.de kostenlos herunterladen können.

Für planende und ausführende Betriebe haben sowohl der Bundesverband Wärmepumpe als auch das Umweltbundesamt umfangreiche Leitfäden entwickelt.

FRÜHZEITIG AN LÄRMSCHUTZ **DENKEN**

Die Geräuschentwicklung einer Luftwärmepumpe sollten Sie in der Planungsphase schon früh berücksichtigen. Ist eine Anlage einmal in Betrieb, lassen sich eventuell störende Brummgeräusche kaum noch unterbinden.

Wenn die Anlage einmal läuft, ist es zu spät: Lärmschutz ist ein Planungsthema.

HYBRIDHEIZUNGEN

Wärmepumpen können in der Regel das ganze Jahr als alleiniger Wärmeerzeuger arbeiten. Die Heizungsanlage wird dann monovalent genannt. Luftwärmepumpen können aber auch mit einem zweiten Wärmeerzeuger, dem integrierten Heizstab oder etwa einem Gas- oder Holzpelletkessel betrieben werden, wenn sie allein nicht die benötigte Heizleistung erbringen. Dann ist die Anlage bivalent und wird auch als Hybridheizung bezeichnet.

Der zusätzliche Wärmeerzeuger arbeitet entweder an den kältesten Tagen anstelle der Wärmepumpe, so dass von "bivalent alternativ" die Rede ist. Oder beide Systeme teilen sich die Arbeit, was man "bivalent parallel" nennt. Hybridgeräte gibt es als Kompaktanlagen mit gemeinsamer Regelung. Diese ermöglicht ein optimales Zusammenspiel.

REGELBAR UND SPARSAM: INVERTERTECHNIK

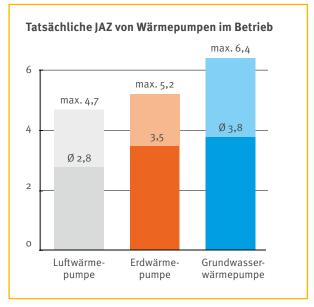
Die meisten Wärmepumpen arbeiten heute mit der sogenannten Invertertechnik. Achten Sie darauf, in jedem Fall ein System mit dieser Technik zu kaufen. Sie ermöglicht es, die Leistung der Wärmepumpe zu regeln. Vorteil: Wenn Sie gerade weniger Wärme benötigen, läuft die Heizung sparsamer weiter. Ohne Inverter würde sie ganz abschalten. Durch die Regelung muss die Wärmepumpe weniger an- und abschalten – der Verschleiß ist dann geringer. Außerdem kann eine Wärmepumpe mit Invertertechnik mehr Strom aus einer Photovoltaikanlage nutzen (siehe Seite 11).

WIE EFFIZIENT SIND DIE SYSTEME?

Wie effizient eine Wärmepumpe ist, zeigt am besten die Jahresarbeitszahl (JAZ). Sie beschreibt, wie viele Einheiten Wärme die Heizung im Jahresschnitt mit einer eingesetzten Einheit Strom gewinnt.

Die Jahresarbeitszahl 4 bedeutet zum Beispiel, dass die Wärmepumpe pro Kilowattstunde Strom, mit dem sie betrieben wird, im Schnitt vier Kilowattstunden Wärme ans Haus abgibt. Je höher die JAZ ist, desto besser.

Nicht so aussagekräftig, aber oft angegeben, ist die Leistungszahl (abgekürzt COP, vom englischen coefficient of performance). Sie benennt ebenfalls das Verhältnis von eingesetzter Energie und gewonnener Wärme. Aber sie bezieht sich immer nur auf bestimmte Rahmenbedingungen. Die Jahresarbeitszahl hingegen berücksichtigt die sich ändernden Bedingungen im Jahresverlauf.



Je mehr grüner Strom durch die Netze fließt, desto klimafreundlicher werden Wärmepumpenheizungen.

Die JAZ, die manchmal in Angeboten angegeben wird, wurde aus den COP-Werten berechnet. In der Regel ist sie besser als die zu erwartende tatsächliche Jahresarbeitszahl. Wie effizient und damit klimafreundlich eine Wärmepumpenheizung wirklich ist, hängt stark von den echten Rahmenbedingungen und der Nutzung ab. Entscheidend für eine gute JAZ ist eine gute Planung, die zu Ihrem Haus passt und Ihre Bedürfnisse berücksichtigt. Nach dem Einbau der Wärmepumpe und dem ersten Betriebsjahr sollten Sie die Jahresarbeitszahl im Blick behalten. Denn durch Einstellungen an der Regelung oder das Abschalten des Heizstabs lässt sich noch nachsteuern.

TIPP WÄRME MESSEN

Lassen Sie auf jeden Fall einen Wärmemengenzähler einbauen, um die tatsächliche Effizienz Ihrer Wärmepumpe einschätzen zu können. Für einen elektrischen Heizstab können Sie zur Kontrolle auch einen eigenen Stromzähler installieren lassen.

Grundwasserwärmepumpen sind die effizientesten Systeme. Wie sparsam eine Anlage aber genau arbeitet, hängt von vielen Bedingungen ab.

ANFORDERUNGEN FÜR FÖRDERMITTEL

Auch für Fördermittel ist die JAZ entscheidend. So gelten für die Bundesförderung im Programm "Heizen mit Erneuerbaren Enegien" des Bundesamts für Wirtschaft und Ausfuhrkontrolle (BAFA) Mindestgrenzen: Luftwärmepumpen müssen eine berechnete JAZ von mindestens 3,5 erreichen, Wasser- und Solewärmepumpen mindestens 3,8.

Eine Liste aller förderfähigen Geräte gibt es auf der Seite:

KLIMAFREUNDLICH ERST AB JAZ 3

Strom kommt auch heute noch zu einem Teil aus Großkraftwerken. Vereinfacht gesagt, entsteht darin aus drei Einheiten Wärme eine Einheit Strom. Nur wenn die Wärmepumpe aus einer Einheit Strom wieder mindestens drei Einheiten Wärme macht, gibt es in dieser Kette keinen Verlust. Das heißt, die JAZ muss mindestens 3 sein, damit eine Wärmepumpe als energieeffizient gelten kann. Mit dem wachsenden Anteil erneuerbarer Energien im Strommix werden Wärmepumpen allerdings zunehmend klimafreundlich.

Die Wärmepumpe mit Ökostrom zu betreiben, ist zwar ein richtiger Ansatz. Allerdings bringen nicht alle Ökostromtarife wirklich einen Vorteil für Energiewende und Klima. Mehr dazu unter

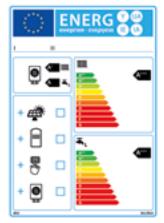
N www.verbraucherzentrale.nrw/ oekostrom

WAS KANN DIE EFFIZIENZ BEEINTRÄCHTIGEN?

Entscheidenden Einfluss auf die tatsächliche Jahresarbeitszahl hat die Vorlauftemperatur der Heizung. Je niedriger sie ist, desto effizienter läuft das System. Eine Flächenheizung wie zum Beispiel eine Fußbodenheizung läuft mit maximal 35 Grad und ist daher besonders zu empfehlen. Aber auch mit herkömmlichen Heizkörpern schließt sich ein effizienter Einsatz der Wärmepumpe nicht aus.

Ungünstig ist ein großer Anteil Warmwasserbereitung, denn dafür sind relativ hohe Temperaturen nötig. Muss für die Warmwasserbereitung der Heizstab häufig einspringen, senkt das die Effizienz besonders stark. Haben Sie hohen Warmwasserbedarf, sollten Sie über eine Ergänzung zum Beispiel durch eine Solarthermie-Anlage oder Warmwasser-Wärmepumpe nachdenken. Lassen Sie sich hierzu ausdrücklich beraten.

Wie viel Sie sich zuhause aufhalten, wie warm Sie es gerne haben - all das spielt eine wichtige Rolle bei der Planung der Wärmepumpe. Wenn Sie im Alltag mehr Wärme benötigen, als Sie bei der Planung angenommen haben, schmälert das die Effizienz und treibt den Stromverbrauch der Wärmepumpe hoch. Schon bei der Planung sollte die langfristige Nutzung des Gebäudes mitgedacht werden.


WIE HELFEN SIEGEL UND LABEL?

Das Gütesiegel der **EHPA** garantiert wichtige Mindeststandards.

Eine Orientierung bei der Entscheidung für eine bestimmte Wärmepumpe ist das Gütesiegel der EHPA, der Europäischen Wärmepumpenvereinigung. Geräte mit dem Siegel erfüllen bestimmte technische Anforderungen. Zudem gibt der Hersteller eine zweijährige Vollgarantie, bietet einen 24-Stunden-Service an und garantiert, dass zehn Jahre lang Ersatzteile verfügbar sind.

Das Energieeffizienz-Heizungslabel hingegen hilft nur begrenzt bei der Auswahl des richtigen Geräts. Alle vergleichbaren Wärmepumpen erreichen die beste Effizienzklasse. Allerdings können die Angaben zum Stromverbrauch und zur Lärmemission bei der Entscheidung hilfreich sein.

Das Heizungslabel hilft nur in den Details bei der Kaufentscheidung.

KÄLTEMITTEL IST ENTSCHEIDEND

Wählen Sie eine Wärmepumpe, die Kältemittel mit niedrigem GWP-Wert nutzt. GWP steht für "global warming potential", also "Erderwärmungspotenzial". Es zeigt an, wie klimaschädlich ein Stoff ist, wenn er freigesetzt wird. Gute Werte sind einstellig, schlechte hingegen vierstellig. Fragen Sie ggf. auch nach natürlichen Kältemitteln.

KOSTEN

Wie teuer die Anschaffung einer Wärmepumpe ist, hängt von der Art der Wärmepumpe, ihrer Leistung und der genutzten Wärmequelle ab. Auch regional können Unterschiede bestehen. Eine erste Orientierung geben die folgenden Kostenschätzungen. Durch staatliche Förderungen können die Kosten gesenkt werden.

Für eine **Luftwärmepumpe** müssen Sie inklusive Installation circa 25.000 Euro einplanen (ohne Förderung).

Für eine **Erdwärmepumpe** fallen zusätzlich zum Preis für die eigentliche Wärmepumpe – etwa 11.000 bis 19.000 Euro – noch Erschließungskosten an: für eine Tiefenbohrung oder das Verlegen von Kollektoren. Wie groß ein Kollektor oder wie tief eine Sonde sein muss, hängt vor allem von der benötigten Heizleistung ab. Auch die Beschaffenheit des Untergrunds spielt eine Rolle: Je feuchter dieser ist, desto besser.

Grobe Richtwerte für die Erschließung sind folgende:

	Preis circa	Ertrag circa
Kollektor	25 Euro pro m ²	o,025 Kilowatt pro m²
Sonde	50-75 Euro pro m (in manchen Gegenden bis zu 100 Euro)	o,o50 Kilowatt pro m

Weil auch der eingesetzte Strom zu Wärme wird, muss nicht die gesamte Heizleistung aus der Wärmequelle stammen. Bei einer JAZ von 4 liefert der Strom ein Viertel dazu. Drei Viertel der Wärme müssen dann aus der Wärmequelle kommen. Für eine Heizleistung von 10 Kilowatt müsste ein Erdkollektor also zum Beispiel 7,5 kW auf rund 300 Quadratmetern gewinnen. Die Erschließungskosten liegen somit bei rund 7.500 Euro.

Bei einer **Grundwasserwärmepumpe** haben Sie auch Erschließungskosten. Dafür fallen etwa 9.000 bis 14.000 Euro an. Für Wärmepumpe, Pufferspeicher und Regelung sind es etwa 22.000 bis 30.000 Euro.

Eine reine **Brauchwasserwärmepumpe** kostet rund 3.000 bis 4.000 Euro. Ohne Förderung liegt der Gesamtbetrag für eine Grundwasserwärmepumpe damit im Schnitt bei circa 37.000 Euro, abzüglich Förderung bei circa 28.000 Euro.

Die Wartungskosten sind bei reinen Wärmepumpen geringer als bei anderen Heizungen. Für einige Geräte besteht nach der F-Gase-Verordnung eine jährliche Pflicht zur Dichtheitsprüfung. Auch ohne Pflicht empfiehlt sich diese alle ein bis zwei Jahre. Das kostet rund 250 Euro jährlich. Der Besuch des Schornsteinfegers entfällt bei reinen Wärmepumpen. Viele Betriebe bieten Vollwartungsverträge zu Festpreisen an. Prüfen Sie dabei, ob alle vorgeschriebenen und empfohlenen Maßnahmen enthalten sind.

Staatliche Stellen auf Bundes- und Landesebene fördern den Einbau von Wärmepumpen mit erheblichen Zuschüssen. Die im Rahmen des Klimapakets ebenfalls eingeführte steuerliche Förderung ist für den Einbau einer Wärmepumpe deutlich unattraktiver als diese Zuschüsse. Für Bohrungen und Kollektoren kann es weitere, kombinierbare Förderungen geben.

Wichtigste Ansprechpartner für Wärmepumpen-Fördermittel sind auf Bundesebene das Bundesamt für Wirtschaft und Ausfuhrkontrolle, kurz BAFA (www.bafa.de/ee) und die KfW-Bank (www.kfw.de/sanieren). Auf Landesebene gibt es Unterstützung für Bohrungen und Kollektoren im Programm www.progres.nrw. Eine Orientierungshilfe bietet das Fördernavi von Energy4Climate: https://tool.energy4climate.nrw/foerder-navi

Vereinzelt fördern auch Kommunen und Energieversorger effiziente Wärmepumpen – nachfragen lohnt sich!

Wichtig: Anträge müssen Sie immer vor Beginn einer Maßnahme stellen. Informieren Sie sich rechtzeitig über die passende Förderung und mögliche Kombinationen. Hilfestellung dabei gibt die Energieberatung der Verbraucherzentrale NRW.

Eine aktuelle Förder-Übersicht gibt es unter

www.verbraucherzentrale.nrw/ foerderprogramme

STROM FÜR DIE WÄRMEPUMPE

Eine Wärmepumpe müssen Sie nicht mit teurem Haushaltsstrom betreiben. Für diese Geräte gibt es bei vielen Anbietern spezielle, vergünstigte Stromtarife. Näheres dazu finden Sie unter

Nww.verbraucherzentrale.nrw/ stromtarife-waermepumpe

HEIZEN MIT SOLARSTROM

Solarstrom vom eigenen Dach kann in die Wärmepumpe fließen. Das verbessert die Klimabilanz der Heizung, senkt die Heizkosten und erhöht den Anteil des eigenen Solarstroms, den ein Haushalt direkt selbst verbraucht. Das ist gut, weil dieser Eigenverbrauch lukrativer ist als die Einspeisung ins Netz.

Strom aus Sonnenenergie verbessert die Klimabilanz der Wärmepumpenheizung.

So kann zum Beispiel eine wirtschaftlich ausgelegte Photovoltaikanlage im gut gedämmten Altbau Strom für bis zu einem Viertel der benötigten Heizwärme liefern - ohne Batteriespeicher. Damit dies gelingt, müssen allerdings Regelung und Einbindung der Anlage genau aufeinander abgestimmt werden.

SMART HEIZEN: VERNETZTE GERÄTE

Manche Hersteller bieten an, die Wärmepumpe über einen Internetanschluss zu überwachen und aus der Ferne für effizienten Betrieb zu sorgen. Störungen können so zum Teil vermieden, Fehlerursachen erkannt werden.

Sind die Geräte einmal mit dem Internet verbunden, können Sie sie theoretisch auch als Smart-Home-Anwendungen etwa per Tablet bedienen.

Neben der Fernwartung ermöglicht der Anschluss ans Internet auch die Smart-Home-Einbindung.

Smart Grid ready

Manche Modelle sind als "Smart Grid ready" gekennzeichnet, also als "bereit fürs intelligente Stromnetz". Solche Wärmepumpen können auf digitale Signale reagieren, die zum Beispiel besonders günstige Strompreise anzeigen.

Geräte mit diesem Logo können auf digitale Signale im Stromnetz reagieren.

TIPP RATGEBER ZUM THEMA:

Ratgeber Heizung – Wärme und Warmwasser für mein Haus

Hilfe bei der Planung der optimalen neuen Heizung für Ihr Haus – im Neubau oder im Zuge einer Modernisierung.

5. Auflage 2023 240 Seiten Buch: 24,00 Euro E-Book: 19,99 Euro

Ratgeber Wärmepumpe – Klimaschonend, effizient, unabhängig

Umfassende Informationen zu Funktionsweise, Effizienz und Anschaffung einer Wärmepumpe.

2. Auflage 2024216 SeitenBuch: 24,00 EuroE-Book: 19,99 Euro

ENERGIEBERATUNG

unabhängig · kompetent · individuell

Erste Einschätzungen und konkrete Tipps zum Umstieg auf eine Wärmepumpenheizung geben Ihnen unsere Energieberater:innen. Sie beraten Sie vor Ort in Ihrem Zuhause, in der Beratungsstelle, telefonisch oder per Video rund um die energetische Gebäudesanierung, den Einsatz erneuerbarer Energien und zum Energiesparen im Haushalt.

Ausführliche Informationen zu unseren Beratungsangeboten sowie die Möglichkeit zur Terminvereinbarung gibt es unter:

verbraucherzentrale

Nordrhein-Westfalen

Herausgeber

Verbraucherzentrale NRW Helmholtzstraße 19 40215 Düsseldorf www.verbraucherzentrale.nrw/energie

/vznrw.energie

/vznrwenergie